http

# 基本概念

HTTP 是超文本传输协议,也就是 HyperText Transfer Protocol

翻译成大白话:

HTTP 是一个在计算机世界里专门在「两点」之间「传输」文字、图片、音频、视频等「超文本」数据的「约定和规范」。

# 常见状态码

# 1xx

属于提示信息,是协议处理中的一种中间状态,实际用到的比较少。

# 2xx

表示服务器成功处理了客户端的请求,也是我们最愿意看到的状态。

  • 「200 OK」是最常见的成功状态码,表示一切正常。如果是非 HEAD 请求,服务器返回的响应头都会有 body 数据。

  • 「204 No Content」也是常见的成功状态码,与 200 OK 基本相同,但响应头没有 body 数据。

  • 「206 Partial Content」是应用于 HTTP 分块下载或断电续传,表示响应返回的 body 数据并不是资源的全部,而是其中的一部分,也是服务器处理成功的状态。

# 3xx

表示客户端请求的资源发送了变动,需要客户端用新的 URL 重新发送请求获取资源,也就是重定向。

  • 「301 Moved Permanently」表示永久重定向,说明请求的资源已经不存在了,需改用新的 URL 再次访问。

  • 「302 Moved Permanently」表示临时重定向,说明请求的资源还在,但暂时需要用另一个 URL 来访问。

301 和 302 都会在响应头里使用字段 Location,指明后续要跳转的 URL,浏览器会自动重定向新的 URL。

  • 「304 Not Modified」不具有跳转的含义,表示资源未修改,重定向已存在的缓冲文件,也称缓存重定向,用于缓存控制。

# 4xx

表示客户端发送的报文有误,服务器无法处理,也就是错误码的含义。

  • 「400 Bad Request」表示客户端请求的报文有错误,但只是个笼统的错误。

  • 「403 Forbidden」表示服务器禁止访问资源,并不是客户端的请求出错。

  • 「404 Not Found」表示请求的资源在服务器上不存在或未找到,所以无法提供给客户端。

# 5xx

表示客户端请求报文正确,但是服务器处理时内部发生了错误,属于服务器端的错误码。

  • 「500 Internal Server Error」与 400 类型,是个笼统通用的错误码,服务器发生了什么错误,我们并不知道。

  • 「501 Not Implemented」表示客户端请求的功能还不支持,类似“即将开业,敬请期待”的意思。

  • 「502 Bad Gateway」通常是服务器作为网关或代理时返回的错误码,表示服务器自身工作正常,访问后端服务器发生了错误。

  • 「503 Service Unavailable」表示服务器当前很忙,暂时无法响应服务器,类似“网络服务正忙,请稍后重试”的意思。

# 常见字段

  • Host

客户端发送请求时,用来指定服务器的域名。

  • Connection

Connection 字段最常用于客户端要求服务器使用 TCP 持久连接,以便其他请求复用。

HTTP/1.1 版本的默认连接都是持久连接,但为了兼容老版本的 HTTP,需要指定 Connection 首部字段的值为 keep-alive。

Connection: keep-alive

一个可以复用的 TCP 连接就建立了,直到客户端或服务器主动关闭连接。但是,这不是标准字段。

  • Content-Length

服务器在返回数据时,会有 Content-Length 字段,表明本次回应的数据长度。

  • Content-Type

Content-Type 字段用于服务器回应时,告诉客户端,本次数据是什么格式。

Content-Type: text/html; charset=utf-8

上面的类型表明,发送的是网页,而且编码是UTF-8。

客户端请求的时候,可以使用 Accept 字段声明自己可以接受哪些数据格式。

Accept: */*

上面代码中,客户端声明自己可以接受任何格式的数据。

  • Content-Encoding

Content-Encoding 字段说明数据的压缩方法。表示服务器返回的数据使用了什么压缩格式

Content-Encoding: gzip

上面表示服务器返回的数据采用了 gzip 方式压缩,告知客户端需要用此方式解压。

客户端在请求时,用 Accept-Encoding 字段说明自己可以接受哪些压缩方法。

Accept-Encoding: gzip, deflate

# GET & POST

# get 和 post 的区别

Get 方法的含义是请求从服务器获取资源,这个资源可以是静态的文本、页面、图片视频等。

POST 方法则是相反操作,它向 URI 指定的资源提交数据,数据就放在报文的 body 里。

# 是安全且幂等的吗

安全和幂等

在 HTTP 协议里,

所谓的「安全」是指请求方法不会「破坏」服务器上的资源。

所谓的「幂等」,意思是多次执行相同的操作,结果都是「相同」的。

很明显 GET 方法就是安全且幂等的,因为它是「只读」操作,无论操作多少次,服务器上的数据都是安全的,且每次的结果都是相同的。

POST 因为是「新增或提交数据」的操作,会修改服务器上的资源,所以是不安全的,且多次提交数据就会创建多个资源,所以不是幂等的。

# HTTP 特性

# 优点

HTTP 最凸出的优点是「简单、灵活和易于扩展、应用广泛和跨平台」。

# 1. 简单

HTTP 基本的报文格式就是 header + body,头部信息也是 key-value 简单文本的形式,易于理解,降低了学习和使用的门槛。

# 2. 灵活和易于扩展

HTTP协议里的各类请求方法、URI/URL、状态码、头字段等每个组成要求都没有被固定死,都允许开发人员自定义和扩充。

同时 HTTP 由于是工作在应用层( OSI 第七层),则它下层可以随意变化。

HTTPS 也就是在 HTTP 与 TCP 层之间增加了 SSL/TLS 安全传输层

# 3. 应用广泛和跨平台

互联网发展至今,HTTP 的应用范围非常的广泛,从台式机的浏览器到手机上的各种 APP,从看新闻、刷贴吧到购物、理财、吃鸡,HTTP 的应用片地开花,同时天然具有跨平台的优越性。

# 缺点

HTTP 协议里有优缺点一体的双刃剑,分别是「无状态、明文传输」,同时还有一大缺点「不安全」。

# 1. 无状态双刃剑

无状态的好处,因为服务器不会去记忆 HTTP 的状态,所以不需要额外的资源来记录状态信息,这能减轻服务器的负担,能够把更多的 CPU 和内存用来对外提供服务。

无状态的坏处,既然服务器没有记忆能力,它在完成有关联性的操作时会非常麻烦。

例如登录->添加购物车->下单->结算->支付,这系列操作都要知道用户的身份才行。但服务器不知道这些请求是有关联的,每次都要问一遍身份信息。

对于无状态的问题,解法方案有很多种,其中比较简单的方式用 Cookie 技术。

Cookie 通过在请求和响应报文中写入 Cookie 信息来控制客户端的状态。

# 2. 明文传输双刃剑

明文意味着在传输过程中的信息,是可方便阅读的,通过浏览器的 F12 控制台或 Wireshark 抓包都可以直接肉眼查看,为我们调试工作带了极大的便利性。

但是这正是这样,HTTP 的所有信息都暴露在了光天化日下,相当于信息裸奔。在传输的漫长的过程中,信息的内容都毫无隐私可言,很容易就能被窃取

# 3. 不安全

HTTP 比较严重的缺点就是不安全:

  • 通信使用明文(不加密),内容可能会被窃听。

  • 不验证通信方的身份,因此有可能遭遇伪装。

  • 无法证明报文的完整性,所以有可能已遭篡改

HTTP 的安全问题,可以用 HTTPS 的方式解决,也就是通过引入 SSL/TLS 层,使得在安全上达到了极致。

# 性能

# 1. 长连接

早期 HTTP/1.0 性能上的一个很大的问题,那就是每发起一个请求,都要新建一次 TCP 连接(三次握手),而且是串行请求,做了无畏的 TCP 连接建立和断开,增加了通信开销。

为了解决上述 TCP 连接问题,HTTP/1.1 提出了长连接的通信方式,也叫持久连接。这种方式的好处在于减少了 TCP 连接的重复建立和断开所造成的额外开销,减轻了服务器端的负载。

持久连接的特点是,只要任意一端没有明确提出断开连接,则保持 TCP 连接状态。

# 2. 管道网络传输

HTTP/1.1 采用了长连接的方式,这使得管道(pipeline)网络传输成为了可能。

即可在同一个 TCP 连接里面,客户端可以发起多个请求,只要第一个请求发出去了,不必等其回来,就可以发第二个请求出去,可以减少整体的响应时间。

举例来说,客户端需要请求两个资源。以前的做法是,在同一个TCP连接里面,先发送 A 请求,然后等待服务器做出回应,收到后再发出 B 请求。管道机制则是允许浏览器同时发出 A 请求和 B 请求。

但是服务器还是按照顺序,先回应 A 请求,完成后再回应 B 请求。要是 前面的回应特别慢,后面就会有许多请求排队等着。这称为「队头堵塞」。

# 3. 队头阻塞

「请求 - 应答」的模式加剧了 HTTP 的性能问题。

因为当顺序发送的请求序列中的一个请求因为某种原因被阻塞时,在后面排队的所有请求也一同被阻塞了,会招致客户端一直请求不到数据,这也就是「队头阻塞」。好比上班的路上塞车。

总之 HTTP/1.1 的性能一般般,后续的 HTTP/2 和 HTTP/3 就是在优化 HTTP 的性能。

# HTTP 与 HTTPS

# HTTP 与 HTTPS 有哪些区别?

  1. HTTP 是超文本传输协议,信息是明文传输,存在安全风险的问题。HTTPS 则解决 HTTP 不安全的缺陷,在 TCP 和 HTTP 网络层之间加入了 SSL/TLS 安全协议,使得报文能够加密传输。

  2. HTTP 连接建立相对简单, TCP 三次握手之后便可进行 HTTP 的报文传输。而 HTTPS 在 TCP 三次握手之后,还需进行 SSL/TLS 的握手过程,才可进入加密报文传输。

  3. HTTP 的端口号是 80,HTTPS 的端口号是 443。

  4. HTTPS 协议需要向 CA(证书权威机构)申请数字证书,来保证服务器的身份是可信的。

# HTTPS 解决了 HTTP 的哪些问题?

HTTP 由于是明文传输,所以安全上存在以下三个风险:

  • 窃听风险,比如通信链路上可以获取通信内容。

  • 篡改风险,比如强制入垃圾广告,视觉污染。

  • 冒充风险,比如冒充淘宝网站。

# HTTPS 是如何解决上面的三个风险的?

  • 混合加密的方式实现信息的机密性,解决了窃听的风险。

  • 摘要算法的方式来实现完整性,它能够为数据生成独一无二的「指纹」,指纹用于校验数据的完整性,解决了篡改的风险。

  • 将服务器公钥放入到数字证书中,解决了冒充的风险。

# 1. 混合加密

通过混合加密的方式可以保证信息的机密性,解决了窃听的风险。

HTTPS 采用的是对称加密和非对称加密结合的「混合加密」方式:

  • 在通信建立前采用非对称加密的方式交换「会话秘钥」,后续就不再使用非对称加密。

  • 在通信过程中全部使用对称加密的「会话秘钥」的方式加密明文数据。

采用「混合加密」的方式的原因:

对称加密只使用一个密钥,运算速度快,密钥必须保密,无法做到安全的密钥交换。

非对称加密使用两个密钥:公钥和私钥,公钥可以任意分发而私钥保密,解决了密钥交换问题但速度慢。

# 2. 摘要算法

摘要算法用来实现完整性,能够为数据生成独一无二的「指纹」,用于校验数据的完整性,解决了篡改的风险。

校验完整性 校验完整性 客户端在发送明文之前会通过摘要算法算出明文的「指纹」,发送的时候把「指纹 + 明文」一同 加密成密文后,发送给服务器,服务器解密后,用相同的摘要算法算出发送过来的明文,通过比较客户端携带的「指纹」和当前算出的「指纹」做比较,若「指纹」相同,说明数据是完整的。

# 3. 数字证书

客户端先向服务器端索要公钥,然后用公钥加密信息,服务器收到密文后,用自己的私钥解密。

这就存在些问题,如何保证公钥不被篡改和信任度?

所以这里就需要借助第三方权威机构 CA (数字证书认证机构),将服务器公钥放在数字证书(由数字证书认证机构颁发)中,只要证书是可信的,公钥就是可信的。

通过数字证书的方式保证服务器公钥的身份,解决冒充的风险。

# TCP 三次握手

(1)客户端发起一个带有建立连接标示的包,包中包含一个客户端生成的一个序列号(seq=x)

(2)服务端接收到这个包之后,会回复一个带有建立连接标示和确认标示的包,其中包含一个服务端生成的序列号(seq=y)和一个确认号码(ack=x+1)

(3)客户端收到之后,会再回复一个包,这个包带有确认标示,和一个确认号码(ack=y+1)

# TCP 四次挥手

(1)客户端发起一个带有结束标示的包,包中带有一个序列号(seq=x)

(2)服务端收到后,但此时服务端可能还没有准备好断开连接,所以会先发送一个带有确认标示的包,包中带有确认序号(ack=x+1)

(3)等到服务端可以断开连接之后,会想客户端发送一个带有结束标示的包,带有序列号(seq=y)

(4)客户端收到服务端的这个结束标示的包之后,会回复一个带有确认标示的包,确认号码为ack=y+1

# SSL/TLS 协议建立的详细流程:

# 1. ClientHello

首先,由客户端向服务器发起加密通信请求,也就是 ClientHello 请求。

在这一步,客户端主要向服务器发送以下信息:

(1)客户端支持的 SSL/TLS 协议版本,如 TLS 1.2 版本。

(2)客户端支持的密码套件列表,如 RSA 加密算法。

(3)客户端生产的随机数(Client Random),后面用于生产「会话秘钥」。

# 2. SeverHello

服务器收到客户端请求后,向客户端发出响应,也就是 SeverHello。服务器回应的内容有如下内容:

(1)确认 SSL/ TLS 协议版本,如果浏览器不支持,则关闭加密通信。

(2)确认的密码套件列表,如 RSA 加密算法。

(3)服务器的数字证书。

(4)服务器生产的随机数(Server Random),后面用于生产「会话秘钥」。

# 3.客户端回应

客户端收到服务器的回应之后,首先通过浏览器或者操作系统中的 CA 公钥,确认服务器的数字证书的真实性。

如果证书没有问题,客户端会从数字证书中取出服务器的公钥,然后使用它加密报文,向服务器发送如下信息:

(1)一个随机数(pre-master key)。该随机数会被服务器公钥加密。

(2)加密通信算法改变通知,表示随后的信息都将用「会话秘钥」加密通信。

(3)客户端握手结束通知,表示客户端的握手阶段已经结束。这一项同时把之前所有内容的发生的数据做个摘要,用来供服务端校验。

上面第一项的随机数是整个握手阶段的第三个随机数,这样服务器和客户端就同时有三个随机数,接着就用双方协商的加密算法,各自生成本次通信的「会话秘钥」。

# 4. 服务器的最后回应

服务器收到客户端的第三个随机数(pre-master key)之后,通过协商的加密算法,计算出本次通信的「会话秘钥」。然后,向客户端发生最后的信息:

(1)加密通信算法改变通知,表示随后的信息都将用「会话秘钥」加密通信。

(2)服务器握手结束通知,表示服务器的握手阶段已经结束。这一项同时把之前所有内容的发生的数据做个摘要,用来供客户端校验。

至此,整个 SSL/TLS 的握手阶段全部结束。接下来,客户端与服务器进入加密通信,就完全是使用普通的 HTTP 协议,只不过用「会话秘钥」加密内容。

# HTTP/1.1、HTTP/2 演变

# 说说 HTTP/1.1 相比 HTTP/1.0 提高了什么性能?

HTTP/1.1 相比 HTTP/1.0 性能上的改进:

(1)使用 TCP 长连接的方式改善了 HTTP/1.0 短连接造成的性能开销。

(2)支持 管道(pipeline)网络传输,只要第一个请求发出去了,不必等其回来,就可以发第二个请求出去,可以减少整体的响应时间。

但 HTTP/1.1 还是有性能瓶颈:

(1)请求 / 响应头部(Header)未经压缩就发送,首部信息越多延迟越大。只能压缩 Body 的部分;

(2)发送冗长的首部。每次互相发送相同的首部造成的浪费较多;

(3)服务器是按请求的顺序响应的,如果服务器响应慢,会招致客户端一直请求不到数据,也就是队头阻塞;

(4)没有请求优先级控制;

(5)请求只能从客户端开始,服务器只能被动响应。

# HTTP/2 做了什么优化?

HTTP/2 协议是基于 HTTPS 的,所以 HTTP/2 的安全性也是有保障的。

那 HTTP/2 相比 HTTP/1.1 性能上的改进:

# 1. 头部压缩

HTTP/2 会压缩头(Header)如果你同时发出多个请求,他们的头是一样的或是相似的,那么,协议会帮你消除重复的分。

这就是所谓的 HPACK 算法:在客户端和服务器同时维护一张头信息表,所有字段都会存入这个表,生成一个索引号,以后就不发送同样字段了,只发送索引号,这样就提高速度了。

# 2. 二进制格式

HTTP/2 不再像 HTTP/1.1 里的纯文本形式的报文,而是全面采用了二进制格式。

头信息和数据体都是二进制,并且统称为帧(frame):头信息帧和数据帧。

这样虽然对人不友好,但是对计算机非常友好,因为计算机只懂二进制,那么收到报文后,无需再将明文的报文转成二进制,而是直接解析二进制报文,这增加了数据传输的效率。

# 3. 数据流

HTTP/2 的数据包不是按顺序发送的,同一个连接里面连续的数据包,可能属于不同的回应。因此,必须要对数据包做标记,指出它属于哪个回应。

每个请求或回应的所有数据包,称为一个数据流(Stream)。

每个数据流都标记着一个独一无二的编号,其中规定客户端发出的数据流编号为奇数, 服务器发出的数据流编号为偶数

客户端还可以指定数据流的优先级。优先级高的请求,服务器就先响应该请求。

# 4. 多路复用

HTTP/2 是可以在一个连接中并发多个请求或回应,而不用按照顺序一一对应。

移除了 HTTP/1.1 中的串行请求,不需要排队等待,也就不会再出现「队头阻塞」问题,降低了延迟,大幅度提高了连接的利用率。

举例来说,在一个 TCP 连接里,服务器收到了客户端 A 和 B 的两个请求,如果发现 A 处理过程非常耗时,于是就回应 A 请求已经处理好的部分,接着回应 B 请求,完成后,再回应 A 请求剩下的部分。

# 5. 服务器推送

HTTP/2 还在一定程度上改善了传统的「请求 - 应答」工作模式,服务不再是被动地响应,也可以主动向客户端发送消息。

举例来说,在浏览器刚请求 HTML 的时候,就提前把可能会用到的 JS、CSS 文件等静态资源主动发给客户端,减少延时的等待,也就是服务器推送(Server Push,也叫 Cache Push)。